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Adaptive Knowledge Distillation-Based Lightweight
Intelligent Fault Diagnosis Framework

in IoT Edge Computing
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Abstract—Intelligent fault diagnosis of mechanical equipment
is crucial to ensure reliable operation. However, cloud-based fault
diagnosis methods often encounter challenges, such as time delays
and data loss. Therefore, edge computing-based fault diagnosis
has emerged as a promising alternative. However, the limited
hardware resources of edge devices in the industrial Internet
of Things (IoT) pose significant challenges in striking a balance
between diagnostic capabilities and operational efficiency. This
article introduces a novel lightweight intelligent fault diagnosis
method, which is tailored for IoT edge computing scenarios.
Optimal weights are trained on cloud computing and inference is
performed on edge computing to ensure timely diagnosis. Based
on adaptive knowledge distillation, fault knowledge is transferred
from a cloud-based deep neural network model (T-model) to an
edge-based lightweight model (S-model). By dynamically adjust-
ing the distillation temperature, the S-model effectively acquires
and deeply understands the knowledge representation from the
T-model. Additionally, we explore practical considerations and
potential challenges in the application of the proposed approach.
Verification experiments were conducted on two experimental
devices, and the NVIDIA Jetson Xavier NX suite was selected
as the edge computing platform. The proposed method exhibited
significant enhancements in diagnostic accuracy, demonstrating
an average improvement of 10.7% compared to existing methods.
In lightweight tests, our method achieved an average 25.5%
increase in inference speed compared to current approaches.
Furthermore, our method reduced memory usage by 96.58%
compared to the T-model, concurrently boosting processing speed
by a factor of 8.79.

Index Terms—Deep learning (DL), edge computing, fault
diagnosis, knowledge distillation, lightweight neural network.

I. INTRODUCTION

FAULT diagnosis is integral to ensuring the reliable oper-
ation of industrial systems and machinery. A prompt and

precise fault diagnosis can help prevent potential failures and
reduce downtime, ultimately leading to an enhancement in
overall system performance [1], [2], [3], [4].
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Over the years, various fault diagnosis techniques have been
explored, ranging from traditional rule-based approaches to
data-driven machine learning methods [5], [6]. Deep learn-
ing (DL)-based fault diagnosis has shown promising results
because of its capacity to autonomously extract complex
features and patterns from raw data [7], [8]. Yuan et al. [9]
presented a generic data-driven, end-to-end manufacturing
system monitoring framework. The framework utilizes DL
techniques to detect and even predict failures and wear and
tear. Xu et al. [10] presented a novel zero-shot fault semantics
learning approach, which is trained on a single fault category
and aims to identify previously unknown compound faults.
Li et al. [11] proposed an intelligible wavelet packet kernel-
constrained convolutional network to address the issues of
inadequate interpretability and susceptibility to noise observed
in DL-based techniques for fault diagnosis. Chen et al. [12]
introduced a novel relational conduction graph network to
address the challenge of scarce fault samples in real-world
scenarios. The network was trained on a laboratory-generated
data set and effectively identified fault types in real-world
environments.

In terms of deployment and implementation, the cloud-
based method has become a common approach to monitoring
the health of industrial systems [13]. The method involves
collecting real-time operational data from devices via sensors
and uploading it to the cloud for inference via the industrial
Internet of Things (IoT). However, in the case of mechanical
equipment, which often operates in harsh environments, this
method is prone to data loss and inference latency. These
challenges significantly impact the real-time capability of fault
diagnosis and hinder its effectiveness [14].

Recently, there has been academic interest in edge comput-
ing. This novel computing paradigm performs computation at
the IoT edge instead of centralized cloud servers [15]. This
strategy reduces system response time, minimizes transmission
bandwidth usage, reduces storage demand, and computes
resources within the cloud infrastructure [16], [17], [18], [19],
[20]. Shi et al. [21] proposed a comprehensive definition of
edge computing and researched various application scenar-
ios, identifying several challenges and prospects within the
realm of edge computing. Liu et al. [22] proposed an IoT
network dynamic clustering solution using the emerging deep
reinforcement learning for efficient data processing in IoT
edge systems. Janjua et al. [23] introduced an abnormal mon-
itoring system, capable of employing unsupervised machine
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learning methods directly on gateways situated at the IoT
edge. This system is used for data analysis and fault diagnosis
in proximity to target devices, which allows for real-time
feedback on results. Jing et al. [24] introduced a cloud-
edge collaboration framework based on DL, resulting in more
accurate predictions of remaining useful life and a significant
reduction in model training time. Zhang et al. [25] utilized
a stacked autoencoder deep neural network to construct a
fault diagnosis model during the training phase. Subsequently,
a transfer learning strategy was employed to deploy this
model at the edge, facilitating expedited fault localization.
Ren et al. [26] introduced a collaborative adaptation approach
between cloud and edge computing for fault diagnosis tailored
to equipment specific to various manufacturing scenes within
cloud manufacturing systems. Qizhao et al. [27] introduced an
efficient asynchronous federated learning technique. It miti-
gates resource demands at the edge, minimizes communication
overhead, and enhances training speed within heterogeneous
edge environments. The combination of edge computing and
DL techniques shows potential for addressing the challenges
of real-time fault diagnosis scenarios, positioning it as an
increasingly important area of research in edge computing
applications [28], [29], [30].

Currently, intelligent fault diagnosis in the context of edge
computing faces a series of challenges, mainly related to the
following issues [13], [31].

1) These models typically have many parameters, resulting
in excessively large model sizes that are not appropriate
for operation on resource-limited edge devices.

2) The high computational complexity of these models
requires significant computational resources on edge
devices, potentially leading to real-time responsiveness
and efficiency issues.

3) Edge devices have limited available memory, which
affects model design. This is not conducive to balancing
the timeliness and accuracy of fault diagnosis.

To address these challenges, researchers have proposed
various model-lightweight methods in recent years. These
approaches are designed to diminish the computation com-
plexity and memory demands of models while upholding
accuracy, rendering them well-suited for fault diagnosis in IoT
edge computing scenarios. These lightweight methods include
model pruning, parameter quantization, low-rank decompo-
sition, depth-wise separable convolutions, and more. Model
pruning reduces the size and computational complexity of
the model by removing redundant parameters and connections
[32]. Parameter quantization represents model parameters in
lower precision formats, reducing memory requirements [33].
Low-rank decomposition further reduces the number of model
parameters by decomposing weight matrices into multiple low-
rank matrices [34]. Depth-wise separable convolutions split the
traditional convolution operation into depth-wise convolutions
and pointwise convolutions, reducing the computation and the
parameter count [35].

By selecting appropriate lightweight methods, we can
effectively adapt complex DL models to resource-constrained
edge devices, enabling efficient and accurate fault diagnosis.
However, when applied to different tasks, the aforementioned

lightweight techniques often require manual parameter adjust-
ments or the design of complex algorithms. This increases
the workload for engineering applications. Knowledge dis-
tillation is a model compression and transfer learning
technique that effectively reduces the workload of algorithm
design [36], [37]. It involves transferring knowledge from a
pretrained T-model to a new S-model to achieve lightweight
and efficiency. Specifically, the T-model is typically a larger
and more accurate DL model, while the S-model is a
lightweight model suitable for operation on edge devices.
Through knowledge distillation, the S-model can learn the
complex knowledge representation from the T-model, thereby
reducing the number of model parameters and computa-
tional complexity, while retaining high diagnostic accuracy
[38]. In this article, an adaptive knowledge distillation-based
lightweight intelligent fault diagnosis framework is proposed
for IoT edge computing scenarios. The following are the main
contributions of this article.

1) The fault diagnosis process is designed based on the
concept of edge computing. The optimal weights with
high diagnostic accuracy are trained and distributed
based on the hardware resources on the cloud computing
side. The inference is performed at the edge computing
side to ensure the timeliness of the diagnosis.

2) Knowledge distillation is employed to transfer the fault
diagnosis expertise from the T-model to the S-model,
realizing knowledge transfer from the cloud-based deep
neural network model to the lightweight edge model.

3) The distillation temperature is adaptively adjusted to
effectively guide S-models in learning the knowl-
edge of T-models. This enabled the S-model to better
understand and generalize complex knowledge repre-
sentations, thereby achieving superior fault diagnosis
results.

4) Comparative tests and ablation experiments ablation
experiments were carried out on two experimental plat-
forms. The results show that the method proposed in this
article can transfer knowledge effectively. The S-model
exhibited better diagnostic capability, a smaller memory
footprint, and higher speed.

This article is structured as follows. Section I presents the
application background of the proposed method. Section II
introduces the technical basis of the proposed method.
Details of the proposed method are presented in Section III.
Experiments and evaluations are demonstrated in Section IV.
Section V presents practical considerations and potential chal-
lenges in the application of the proposed approach. Finally,
Section VI presents the conclusions and future work.

II. PRELIMINARY

In this article, we introduce a novel knowledge dis-
tillation methodology aiming to optimize model size and
enhance computational efficiency. This is achieved by trans-
ferring knowledge from a large and intricate neural network,
referred to as the teacher model (T-model), to a smaller
and simpler neural network known as the student model
(S-model) [38], [39]. The process contains three key elements.
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A. Distillation Temperature

The distillation temperature is used to weigh the output
of the T-model to control the entropy size of the probability
distribution of the T-model output. N classes of samples are
fed into the model. With n representing the number of classes
and b denoting the index of classes. The probability of the
b-category output of the model can be expressed as

Qb = exp
(
zb/T

)

∑n
b=1 exp

(
zb/T

) (1)

where Qb is the soft label for category b, T is the temperature
in the knowledge distillation, and zb indicates the output of
the fully connected layer of the neural network via category b.
The optimal balance between classification accuracy and con-
fidence in the S-model can be achieved by adjusting the size
of T . The output of the T-model has a smoother probability
distribution when T is large, and the trained S-model is more
focused on the confidence level of the classification. When T
is small, the output of the T-model is sharper, the probability
distribution is concentrated, and the trained S-model is more
focused on the accuracy of the classification. When T is equal
to 1, indicating the standard Softmax function.

B. Soft Label

In knowledge distillation, soft label (Q) is used as a label
to guide the training of the S-model. Specifically, the soft
label of the T-model for a sample is a vector of probability
distributions, where each dimension represents the probability
that the sample belongs to a different label. Based on (1), the
soft label is obtained by dividing the probability distribution
based on the T-model predictions by T and performing the
Softmax exponentiation. Compared with traditional hard labels
(one-hot labels), soft labels can provide more supervised
information and help the S-model to learn better from the
T-model. In addition, soft labels can solve the problem of the
discrete output of the T-model, it makes the output of the
S-model more continuous.

C. Loss Functions

The goal of knowledge distillation is to make the S-model
learn the knowledge of the T-model. Therefore, loss functions
are required to guide the learning of the S-model.

Hard loss is used to ensure the similarity of the S-model
output to the sample label. For the sample (xi, li), the proba-
bility of the student network predicting class b by the Softmax
function is p(b, xi), as T = 1. The distribution q(li, xi) of hard
labels li can be expressed as

q(li, xi) =
{

1, b = li
0, b �= li.

(2)

The standard cross-entropy loss function is used as the hard
loss in this process, which can be written as

Losshard = −
n∑

b=1

q(li, xi)log p(b, xi)

= −log p(b = li, xi). (3)

Fig. 1. Process of intelligent fault diagnosis method based on adaptive
knowledge distillation.

Soft loss measures how close the predicted outcome of the
S-model is to the soft label of the T-model. With setting T
= t in (1), put the sample (xi, li) into the teacher network, and
get the soft label QT(b, xi, t) of the sample. The output soft
label QS(b, xi, t) of the student network can be obtained in the
same way. The Kullback–Leibler divergence loss function is
used as the soft loss in this process, which can be written as

Losssoft =
n∑

b=1

QT(b, xi, t)log
QT(b, xi, t)

QS(b, xi, t)
. (4)

Due to the random initialization of parameters at the onset
and the absence of hard labels, the model often struggles to
converge. Both hard and soft labels are used to supervise
knowledge distillation with the following loss function:

Loss = b∗Losshard + (1 − b)∗Losssoft (5)

where β is a hyperparameter in knowledge distillation, which
is used to balance the knowledge obtained from the teacher
network through knowledge distillation (soft label) and the
tagged knowledge of the sample (hard label). When the value
of β is close to 0, the model emphasizes more on accurate
prediction of true labels and misses the learning of T-model
information. On the contrary, when the β value is close to 1,
the model emphasizes more on the accuracy of the T-model
prediction and pays less attention to the accuracy of the true
label. In applications, β should be set according to actual task
conditions.

III. PROPOSED METHOD

A. Framework of the Proposed Approach

To address the fault diagnosis of rotating machinery in
IoT edge computing scenarios, this study introduces an adap-
tive knowledge distillation-based intelligent fault diagnosis
method. The approach comprises two parts: 1) a training part
located on the cloud and 2) a testing part on the edge. Fig. 1
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Fig. 2. Network structure of the (a) T-model and the (b) S-model.

illustrates the primary flowchart of the method introduced in
this study.

On the cloud, first, a small number of samples are received
from the edge through the IoT network. Next, the samples are
oversampled to construct the training data set by the synthetic
minority over-sampling technique (SMOTE). The T-model is
trained iteratively based on the training data set. Knowledge
is supplied by the T-model that has been trained, and the
simple S-model is trained by adaptive distillation to acquire
the knowledge in the T-model. This procedure achieves the
transfer of knowledge from the complex T-model to the simple
S-model. Finally, the optimal weights of the S-model are sent
down to the edge through the IoT network after training.

On the edge, the S-model is deployed in the edge computing
device, which has imported the best weights of the model
distributed from the cloud. Sampling real-time data from
rotating machinery and importing the samples into the S-model
for testing, achieving fast and accurate fault diagnosis results
on the edge.

In conclusion, the most important aspect of the proposed
method is the transfer of knowledge from the complex T-
model to the simple S-model which is achieved by adaptive
knowledge distillation.

B. Architecture of Network

To achieve the lightweight deployment of the model in IoT
edge computing scenarios, we designed a neural network with
a relatively complex structure as the T-model and a neural
network with a simpler structure as the S-model. The network
structures are shown in Fig. 2.

The network structure of the T-model consists of eight basic
modules connected in series, as shown in Fig. 2(a). Each basic
module consists of a 3×3 convolution, a 1x1 convolution, and
a BN layer. Specifically, for modules in which the number
of channels and feature maps in the input domain and output
domain remain unchanged, a residual connection is added.
The structure of the S-model is very simple, as shown in
Fig. 2(b), consisting of three 3×3 convolution layers and BN
layers in series. When designing the structures of the teacher
and S-models, the following issues were primarily taken into
consideration.

1) Better Feature Extraction Capability for the T-model:
The multibranch architecture model can be considered as

Fig. 3. Process of the proposed knowledge distillation method.

an implicit collection of multiple shallow models, which
can improve the feature extraction ability of the network.
At the same time, the residual connection can prevent
the disappearance of the gradient and is more conducive
to training.

2) The Lightweight of the S-model: Compared with the
multibranch structure of the T-model, the single-branch
structure of the S-model can significantly reduce
memory costs. At the same time, the three 3×3 con-
volution layers connected in series allow the model to
achieve faster inference speed.

C. Training of T-Model

Training fault diagnosis models in the context of edge
computing are often challenged by insufficient or imbalanced
training samples. The proposed method oversamples the train-
ing set data to augment the training set based on SMOTE
[40]. This approach enhances the ability of the model to learn
from minority samples during the training of the T-model,
thereby improving the diagnostic capability of the T-model.
The specific steps are as follows.

1) For each sample in the data set Dsample =
{x1,x2, . . . . . .xi}, select one sample xc from c nearest
neighbors.

2) Set a random number γ , γ ∈ (0, 1).
3) Generate a new synthetic sample using the following

formula:

xnew = xi + γ ∗(xc − xi). (6)

4) Repeat the above steps N − i times to generate N − i
new samples.

By employing this oversampling method, an augmented
training data set is obtained: Dtrain = {x1,x2, . . . ,xi, . . . ,xN}.

Training the T-model using the augmented data set Dtrain.
During training, the cross-entropy loss function is used to
quantify the difference between the real distribution and the
output distribution of the model

Lossteacher = −
N∑

i=1

(Ltrain∗logLteacher) (7)

where Ltrain = {l1train, l2train, . . . , lNtrain} is the true
distribution of the data set Dtrain, and Lteacher =
{l1teacher,l

2
teacher, . . . , lNteacher} is the output domain of the T-

model.
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D. Adaptive Knowledge Distillation Method

Fig. 3 depicts the proposed adaptive knowledge distillation
framework. The proposed method modifies the output layer of
the trained T-model by adding a parameter T = t. This model
processes z training samples in a training batch and produces
the T-model’s soft label set LQT = {QT

1 , QT
2 , . . . , QT

z } for
that batch. Similarly, set T = t in the S-model to obtain the
S-model’s soft label set LQS = {QS

1,Q
S
2, . . . , QS

z } for the same
batch of training samples.

Based on (4), the soft loss between LQT and LQS are
calculated. Set T in the S-model to 1 to obtain the student hard
label set Lp = {p1,p2, . . . ,pz} for the same batch of training
samples. Calculate the hard loss by using the (3) between Lp

and the label set Lq = {q1,q2, . . . ,qz} of the batch of samples.
Finally, the loss is obtained from (5). The gradients of the loss
concerning the parameters of the S-model are then calculated
through backpropagation. The Adam optimizer adjusts the
parameters of the S-model using the computed gradients.

It is worth noting that the proposed method adopts a
dynamic adjustment approach for the T during the distillation
process. This process can change the degree of softness of the
prediction distribution between the T-model and the S-model.
This allows the S-model to better learn from the knowledge of
the T-model. Specifically, the process involves the following
steps.

1) Initialisation of the Distillation Temperature: At the
beginning of the training, an initial temperature of T0 is
set, which can be set based on the empirical values of
the pretrained.

2) Calculate the Softened Predictive Distributions: In each
iteration, the predictions of the T-model and the S-model
on the training data are obtained first. The predictions
of the T-model and S-model are softened using the
current temperature T. The predictions are converted
into probability distributions by applying the Softmax
function.

3) Calculate the Losssoft: Using the softened probability
distributions, compute the KL divergence loss between
the prediction distributions of the T-model and the
S-model.

4) Calculate the Gradient of T: By calculating the gradient
of the concerning the temperature T, obtain the loss
gradient concerning T

Gradient_T = Gradient(Losssoft, T). (8)

5) Update Temperature T: Dynamically adjust the value
of T based on the direction and magnitude of the loss
gradient. Specifically, increase or decrease the temper-
ature value so that the average of the loss gradient is
close to zero. The purpose of this step is to reduce
the Loss further. This avoids instability problems caused
by excessively high or low temperatures during the
training process, and enables the S-model to learn more
knowledge of the T-model

T = T − KD_lr∗mean(Gradient_T) (9)

where mean() is the average algorithm, and KD_lr is
the learning rate (LR) used to update the temperature
during distillation with an initial value of 0.1.

6) Update Temperature LR: The following formula adjusts
the temperature LR during distillation:

KD_lr

=

⎧
⎪⎨

⎪⎩

KD_lrmin + 1
2 (KD_lrmax − KD_lrmin)

[
1 + cos

(
EC−EW
EM−EW

π
)]

, EC ≥ EW

KD_lrmax
EC
EW

, EC<EW

(10)

where EC, EW , and EM are the current epoch, warm-up
epoch, and maximum epoch, respectively. KD_lrmax and
KD_lrmin are the maximum LR and minimum LR in the
adjustment process, respectively.

Repeat steps 2–6 during the distillation process until
the specified number of iterations is reached. Through the
aforementioned process, the temperature parameter T can be
dynamically adjusted based on the current model state and loss
conditions, enabling a more effective and stable knowledge
distillation process. In addition, it allows better adaptation to
different data sets and model structures, leading to improved
performance and generalization capability of the knowledge
distillation method.

IV. CASE STUDIES

A. Experimental Background

This article employed a computer system and a Jetson
Xavier NX kit for conducting all case studies. The computer
system consists of an Intel Core i7-11700K@ 3.60 GHz
processor, an NVIDIA GeForce RTX 3070 GPU, and 32.0 GB
of RAM. On the other hand, the Jetson Xavier NX kit includes
an NVIDIA Carmel ARM CPU, an NVIDIA Volta GPU with
48 Tensor Cores, and 8.0 GB of RAM. These devices were
used as the cloud device and the edge device, respectively. The
cloud device, operating on the Windows platform, hosted the
models’ dependency environment. In contrast, the edge device
utilized Docker, an open-source application container engine,
for deployment. The models were developed using Python 3.9
and PyTorch 1.11.0.

For the experimental procedure, the data set was partitioned
into a training data set, a validation data set, and a testing data
set. The training and verification data sets were stored in the
cloud device, while the test data set was stored in the edge
device. The models were trained on the cloud device, enabling
the acquisition of optimal weights. These weights were then
transferred to the edge device via file streams. On the edge
device, the models loaded these weights and performed tests
to obtain results.

The proposed method is compared with the typical methods
using rotating machinery failure simulation (RMFS), which
mainly involves the diagnostic accuracy, feature extraction
capability, complexity metrics, and the inference time of the
model. This evaluation aims to validate its efficiency in fault
diagnosis and lightweight performance in IoT edge computing
scenarios. Furthermore, to validate the effectiveness of the
proposed adaptive knowledge distillation method, a series
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Fig. 4. Experimental equipment of RMFS.

TABLE I
FAULT SETTING METHOD OF RMFS

of ablative experiments were performed using the drivetrain
dynamics simulator (DDS).

B. CASE 01

1) Experimental Method: The experimental for case 01,
focusing on the gearbox, was obtained using a custom-
designed RMFS platform from Huazhong University of
Science and Technology, as shown in Fig. 4. This compre-
hensive rotating machinery fault simulator includes a motor,
controller, bearing, gearbox, and brake. It allows the introduc-
tion of multiple fault scenarios for bearings and gears, along
with adjustments to operating conditions by varying speed
and load. For this study, we selected the gearbox from this
platform. Specifically, the gearbox utilized is a ZDY80 parallel
shaft gearbox, which is capable of simulating five different
operating conditions: 1) normal; 2) broken; 3) miss; 4) root;
and 5) pitting. The fault location is in the large gear, as shown
in Table I.

Acceleration sensors were mounted above the vertical axis
of both the high-speed and low-speed end shafts of the
parallel gearbox to record acceleration signals in the x, y,
and z directions at these two positions. A sliding window
approach was used for sampling, with a fixed window length
of 1024, and a window overlap of 0 was employed. The
samples of the five fault conditions were labeled as 0–4
during the experiments. To fully verify the advantage of
the proposed method, three sample data sets of experi-
ments are conducted with 5, 10, and 20 randomly selected
samples for each fault category, denoted as: DI

sample =

{x0−1,x0−2, . . . ,x4−5}, DII
sample = {x0−1,x0−2, . . . ,x4−10}, and

DIII
sample = {x0−1,x0−2, . . . ,x4−20}, respectively. Based on the

DI
sample, DII

sample, and DIII
sample, the training data sets: DI

train =
{x0−1,x0−2, . . . ,x4−100}, DII

train = {x0−1,x0−2, . . . ,x4−100}, and
DIII

train = {x0−1,x0−2, . . . ,x4−100}are constructed by SMOTE
oversampling, respectively. During testing, 100 samples were
randomly selected from each fault category to form the
testing data set Dtest = {x1,x2, . . . ,x100}. To further validate
the diagnostic performance of the proposed method and its
applicability in IoT edge computing scenarios, the following
models were selected for comparative experiments.

1) Mobilenet: Mobilenet is a lightweight DL model specif-
ically designed for efficient deployment on mobile
and embedded devices. It utilizes depth-wise separable
convolutions to reduce computation while maintaining
reasonable accuracy, making it ideal for resource-
constrained environments [41].

2) Mnasnet: Mnasnet is a mobile-friendly architecture
optimized for edge devices with limited computational
resources. It employs a differentiable neural architecture
search to automatically design the network, striking
a balance between model accuracy and computational
efficiency [42].

3) Xception: Xception is a deep convolutional neural
network architecture. It employs depth-wise separable
convolutions in an extreme version, achieving superior
accuracy in classification tasks [35].

4) Resnet: Resnet is a seminal DL model architecture that
introduced residual connections. This design innovation
effectively addresses the vanishing gradient problem
in very deep neural networks, enabling the creation
of even deeper models for stronger feature extraction
capabilities [43].

5) T-Model: The T-model described in the previous section.
Which is iteratively trained to obtain optimal weights
based on Dtrain.

6) Proposed Method: Based on the optimal weights of
the T-model and the Dsample, the S-model undergoes
adaptive knowledge distillation training, resulting in
the optimal weights for the S-model. Subsequently, the
S-model is evaluated on the Dtest.

MobileNet and MnasNet have been popular lightweight
network models in recent years. Comparing the proposed
method with these two networks to evaluate its lightweight
effect. On the other hand, Xception and Resnet are efficient
convolutional neural networks in recent years. Comparing
the proposed method with these two approaches to eval-
uate its diagnostic capacity. Furthermore, the comparison
of the proposed method with the T-model to measure
the effectiveness of knowledge transfer in the proposed
approach.

2) Results and Discussion: The input samples for each
model are reshaped into a matrix of size [6], [13]. For training,
the batch size is set to 32, taking into account convergence
and memory considerations. When training the MobileNet,
MnasNet, Xception, Resnet, and T-model, the epoch is set
to 50, and when training the S-model by the knowledge
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Fig. 5. Test accuracy in case one. (a) Test accuracy of group I. (b) Test
accuracy of group II. (c) Test accuracy of group III.

TABLE II
TEST ACCURACY OF DIFFERENT MODELS IN CASE ONE (%)

distillation, this parameter is set to 500. This setting method
ensures that each model can converge during the training
process. Cosine annealing LR is used to adjust the LR during
training. To ensure the robustness and reliability of the results,
I, II, and III groups of experiments were independently
repeated five times and the average values were used for the
subsequent analysis.

The experimental test accuracy is shown in Fig. 5, where
the line connects the averages of five repeated experiments and
the curves represent the normal distribution of test accuracy
for each model. Table II shows the averages of repeated
experiments in three sets of experiments. The three sets
of experiments shown in Fig. 5 have similar trends. Only
the T-model and the proposed method maintain an accuracy
of over 97% across different data scenarios. Furthermore,
their normal distribution curves are concentrated, indicating
the excellent diagnostic ability of the T-model. The average
accuracy of Mobilenet and Mnasnet is significantly lower than
the other models, and their normal distribution curves are more
scattered. This suggests that traditional lightweight models are
less likely to achieve excellent fault diagnosis performance in
IoT edge computing scenarios with limited real-world samples.
As for Xception and Resnet, the average diagnostic accuracy
in group I experiments is 81.41% and 93.75%, respectively,
which is significantly lower than that of the T-model and the
proposed method. This indicates a significant decrease in the
diagnostic capability of classical models when facing limited
real samples in IoT edge computing scenarios.

To further analyze the feature extraction performance of
different models under different sample sizes and to verify
the diagnostic performance of the proposed method, we
use t-distributed stochastic neighbor embedding (t-SNE) to
visualize the impact of different techniques. The features
extracted by the model are represented by the output in front
of the fully connected layer. Comparing the feature extraction
results of the different models shown in Fig. 6(a), we observe

Fig. 6. t-SNE of different models in case one. (a) Group I. (b) Group III.

that for Mobilenet, Mnasnet, and Xception, samples from
different fault classes overlap and there is no clear boundary
between fault types. In the case of Resnet, although the
data distribution within each fault class is more compact,
some individual fault types show indistinct features and partial
samples from different fault classes appear to be stacked. For
the T-model and the proposed method, clear boundaries are
maintained between each class, with only a few instances of
slight feature misalignment. Fig. 6(b) shows the t-SNE results
of group III, we find that the feature stacking of samples from
different classes has improved for Mobilenet, Mnasnet, and
Xception. However, some individual faults still lack distinct
boundaries and exhibit adhesion. In contrast, Resnet maintains
clear boundaries between each class, with a few samples
showing feature misalignment. Clear class boundaries are
observed for the T-model and the proposed method. The above
analysis indicates that under both initial sample conditions,
the T-model and the proposed method demonstrate excellent
feature extraction capabilities, surpassing the performance of
the corresponding control models.

Furthermore, based on the detailed diagnostic information
in the test results, an analysis of the diagnostic performance
of the models was conducted. Specifically, the model weights
corresponding to the median test accuracy of each model in the
group II were selected, tested in Dtest, and the classification
results were visualized as a percentage stacked bar chart, as
shown in Fig. 7. The graph shows the number of correctly
classified samples and the total number of misclassifications
for each category. In the graph, the number of misclassi-
fications for T-model and the proposed method are 1 and
3, respectively. Resnet and Xception maintain misdiagnosis
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Fig. 7. Number of correctly diagnosed samples in each state and number of
misdiagnosed samples in group II.

counts at a relatively low level but are noticeably higher
than the proposed method and T-model. Mobilenet has a
misdiagnosis count of 54, with an error rate reaching 10.8%.
Another lightweight model, Mnasnet, has a misdiagnosis count
of 100, which exceeds the number of correctly diagnosed
samples for any single category. The results indicate that in
the context of this work, the T-model can effectively learn
fault diagnosis knowledge from operational data. The proposed
adaptive knowledge distillation achieves successful knowledge
transfer, enabling accurate fault diagnosis on edge devices.

In the previous sections, the proposed method and the
comparative approaches have been evaluated in terms of
classification accuracy and feature extraction capability for
the specified tasks. Furthermore, it is essential to evaluate the
network complexity of the models. These indicators of model
complexity help determine the suitability of the models for use
in IoT edge computing scenarios. The following parameters
of different models were compared in the experiments.

1) Params: The total number of parameters to be trained
in the model training. It is used to measure the size of
the model and to calculate the space complexity.

2) Memory: The amount of memory required for model
inference.

3) Floating Point Operations (FLOPs): The theoretical
amount of floating point arithmetics is the amount of
computation in the neural network. A high FLOPs in
the model indicates that the model has a higher model
capacity, allowing it to learn more information and
capture more complex features.

4) Inference Time: Inference time of a single sample in the
edge-end device.

Table III shows the parameters of each model, including
params, memory, flops, and the average inference time per
single sample. The statistics for the params, memory, and flops

TABLE III
TEST RESULTS OF THE COMPLEXITY OF EACH MODEL

Fig. 8. Test results of the complexity of each model. (a) Params. (b) Flops
(MFlops). (c) Memory (MB). (d) Inference time (ms).

parameters were obtained using torchstat, a lightweight neural
network analyzer based on PyTorch. Inference times were
measured on the NVIDIA Jetson Xavier NX platform using the
model weight from group III. To ensure the reliability of the
results, the measurement experiment was repeated ten times.
To reduce the impact of code writing style on inference time,
we monitored the model’s computation time on the GPU using
CUDA Event. In addition, the GPU was preheated at the same
intensity before each speed measurement. Fig. 8 provides a
visual representation of these results.

Compared to the T-model, the S-model of the proposed
method has params and memory which are 15.84% and 4.03%
of the T-model, respectively. This indicates that the complexity
of the S-model of the proposed method is lower, which makes
it easier to be trained with less hardware overhead at runtime.
The inference time is 11.40% of the T-model, demonstrating
that the proposed method achieves faster inference speed on
edge computing devices. Notably, the FLOPs of the T-model
are 3540, much higher than the classical deep neural network
models Xception and Resnet. This indicates its large model
capacity, and as a T-model, it can transfer a significant amount
of information to the S-model.

Xception and Resnet have over 14 times more parameters
than the S-model in the proposed method. This indicates that
classical deep neural network models have a significantly
higher number of parameters, leading to higher complexity
and making them less amenable to training. The memory of
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Fig. 9. Experimental equipment of DDS.

the proposed method is also significantly smaller than that of
Xception and Resnet, indicating reduced hardware overhead at
runtime. The FLOPs of the proposed method are in the same
order of magnitude as those of the two classical deep neural
networks. This indicates that the S-model of the proposed
approach has a significant model capacity and can learn a
considerable amount of information. In terms of inference
time, the proposed method is 8.31% and 10.31% of that
of Xception and Resnet, respectively, showing a clear speed
advantage on edge devices.

The S-model of the proposed method has parameters that
are in the middle range compared to Mobilenet and Mnasnet.
The three models have similar memory requirements, which
makes them suitable for edge computing devices. However,
the FLOPs of the S-model in the proposed method are
2650.89% and 3792.17% of those of Mobilenet and Mnasnet,
respectively, indicating a relatively larger information capacity
in its model. Compared with the two classical lightweight
models, the inference time of the proposed method is 57.13%
and 28.38%, respectively. This shows a significant speed
advantage, which enables faster prediction results on edge
devices, thus assisting IoT monitoring systems in timely
responses.

It can be found through the experiment of CASE1.
Compared with Mobilenet and Mnasnet, representatives of
lightweight neural networks, in terms of complexity indica-
tors, the proposed method can achieve the same level of
lightweight; in terms of inference time, the proposed method
is ahead of Mobilenet and Mnasnet; in terms of diagnostic
effect, the proposed method is stronger than Mobilenet and
Mnasnet. Compared with the two classic neural networks,
Xception and Resnet, the proposed method has an obvious
lightweight effect and strong diagnostic ability. Compared with
the T-model, the proposed method can achieve lightweight
while ensuring diagnostic performance. The above results
show that the proposed method can achieve relatively ideal
fault diagnosis results under IoT edge computing.

C. CASE 02

1) Experimental Method: The DDS at Southeast
University, China was used to acquire the experimental data
for Case 1. Fig. 9 depicts the simulation platform, where
the DDS is capable of simulating the health and multiple
fault operating conditions of the bearing and gearbox. The
operating condition data of the gear and gearbox in this data
set were selected for the case study [44].

The acceleration signals along the x, y, and z axes of the
experimental platform were acquired by using acceleration
sensors attached to the parallel and planetary gearboxes. A
sliding window approach was used for sampling, with a fixed
window length of 1024, and a window overlap of 0 was
employed. In this study, random Gaussian white noise was
introduced to the original experimental signal to enhance it.
The signal-to-noise ratio (SNR) of the noise signal was set
to −2.

The experimental apparatus can simulate nine fault con-
ditions, namely 1)health, 2)gear teeth broken, 3)gear teeth
missing, 4)root crack, 5)surface pitting corrosion, 6)bearing
ball, 7)bearing comb, 8)bearing inner ring, and 9)bearing outer
ring. They are labeled as 0–8 during the experiments. To fully
verify the effectiveness of the proposed method, three sets
of experiments are conducted with 6, 12, and 20 randomly
selected samples for each fault category, denoted as: DA

sample =
{x0−1,x0−2, . . . ,x8−6}, DB

sample = {x0−1,x0−2, . . . ,x8−12}, and
DC

sample = {x0−1,x0−2, . . . ,x8−20}, respectively. Based on the
DA

sample, DB
sample, and DC

sample, training data sets: DA
train =

{x0−1,x0−2, . . . ,x8−100}, DB
sample = {x0−1,x0−2, . . . ,x8−100},

and DC
sample = {x0−1,x0−2, . . . ,x8−100}, are constructed by

SMOTE oversampling, respectively. During testing, each fault
category contains 100 samples to form the testing data set
Dtest = {x1,x2, . . . ,x100}. In addition, to validate the applica-
tion effectiveness of the modules of the proposed method, the
following models are selected for ablation experiments.

1) S-Model: The S-model is iteratively trained using Dtrain
to obtain optimal weights, and tested on the Dtest.

2) T-Model: Based on Dtrain, the T-model is iteratively
trained to obtain optimal weights and tested on the Dtest.

3) T-Model_W/O-SMOTE: Based on Dsample, the T-model
is iteratively trained to obtain optimal weights and tested
on the Dtest.

4) KD_T0: The temperature T during distillation is set to
three fixed values, T = 5, T = 10, and T = 20. Take
the five results with the highest accuracy among all test
results as the final result.

5) Proposed Method: Based on Dtrain, the T-model is
trained to obtain optimal weights. Then, knowledge
distillation was performed based on the optimal weights
of the T-model and the Dsample. The temperature adaptive
regulation is used for the process of knowledge distilla-
tion. Then, the S-model is tested on the Dtest.

In the above-mentioned methods, the comparison of the
proposed method with the S-model allows us to verify
the improvement of the model performance brought by the
proposed approach. Comparing the proposed method with the
T-model allows us to verify the retention of the T-model
knowledge during the knowledge distillation process in the
proposed approach. By comparing the T-model with T-
model_W/O-SMOTE, the improvement of SMOTE on the
training effect of the T-model in the proposed method can
be verified. Finally, the comparison of the proposed method
with the KD_T0 allows us to validate the improvement result-
ing from the adaptive temperature changes in the proposed
approach.
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Fig. 10. Test accuracy in case two. (a) Test accuracy of group A. (b) Test
accuracy of group B. (c) Test accuracy of group C.

TABLE IV
TEST ACCURACY OF DIFFERENT MODELS IN CASE TWO (%)

2) Results and Discussion: The input samples for each
model are reshaped into a matrix of size [6], [13]. For training,
the batch size is set to 32, taking into account convergence
and memory considerations. In regular training, Epoch is set to
50, while in knowledge distillation training, this parameter is
500, this setting method ensures that each model can converge
during the training process. Cosine annealing LR is used to
adjust the LR during training. To ensure the robustness and
reliability of the results, A, B, and C groups of experiments
were independently repeated ten times and the average values
were used for subsequent analysis.

The experimental test accuracy is shown in Fig. 10, where
the line connects the averages of five repeated experiments and
the curves represent the normal distribution of test accuracy
for each model. Table IV shows the averages of repeated
experiments in three sets of experiments. The experiments
presented in Table IV share common trends. The test results of
the S-model were significantly lower than those of the T-model
and the Proposed method in the three groups, indicating that
its diagnostic ability is limited. The T-model achieves the
highest accuracy in each group, demonstrating its excellent
diagnostic performance. In the three test groups, the diagnostic
accuracy of the T-model is improved by 7.07%, 8.08%,
and 4.18%, respectively, compared to the S-model, showing
a significant advantage. On the other hand, in the three
groups, compared with the T-model_W/O-SMOTE method,
the diagnostic accuracy of the T-model increased by 7.59%,
2.55%, and 3.86%, respectively. It shows the gain effect of
SMOTE on the training of the T-model. Furthermore, after
applying the proposed adaptive knowledge distillation method,
the diagnostic results of the proposed method are improved
by 4.82%, 6.47%, and 2.46%, respectively. Compared to the
S-model in the three respective groups, the results indicate
the effective transfer of knowledge from the T-model to the
S-model. In addition, the temperature used in the knowledge
distillation process is adaptively adjusted in the proposed

method. Compared to the traditional knowledge distillation
with a fixed temperature (KD_T0), the diagnostic results of
the proposed method are further improved by 2.82%, 2.61%,
and 2.05% in the three groups, respectively. Furthermore, after
applying the proposed adaptive knowledge distillation method,
the diagnostic results of the proposed method are improved
by 4.82%, 6.47%, and 2.46% compared to the S-model in the
three respective groups, also indicating the effectiveness of the
knowledge transfer process. In addition, the temperature used
in the knowledge distillation process in the proposed method
is adaptively adjusted. Compared to the knowledge distillation
with a fixed temperature (KD_T0), the diagnostic results of
the proposed method are further improved by 2.82%, 2.61%,
and 2.05% in the three groups, respectively. This shows that
the use of the temperature-adaptive adjustment method can
improve the effectiveness of knowledge distillation.

To conduct further analysis of the classification performance
of various models under different sample sizes, confusion
matrices for test results are constructed using data from groups
A and C. Select the classification results corresponding to
the diagnostic median of each model in the five repeated
experimental results, and draw the confusion matrix as shown
in Fig. 11. The vertical axis represents the true labels of
the samples, while the horizontal axis denotes the predicted
results. The prediction accuracy and the corresponding sam-
ple counts are annotated within the matrix cells. In groups
A and C, the S-model, shows significant improvements in
diagnostic accuracy for individual classes after undergoing
adaptive knowledge distillation. In Fig. 11(a), compared with
T-model_W/O-SMOTE, the diagnostic accuracy of the T-
model for the “Surface” and “Root” categories has increased
by 17.17% and 45.57%, respectively. It shows that using
SMOTE during the training process has significantly improved
the classification effect of the T-model. In Fig. 11(b), the
proposed method improves the diagnostic accuracy of the
Root class from 66.33% to 85.86%, while the accuracy of the
“Comb” class increases from 94.95% to 100%. Notably, all
class accuracies of the proposed method reach 85% in group
C experiments, whereas some class accuracies remain as low
as 69% in the results of knowledge distillation with a fixed
temperature (KD_T0). This further illustrates that the proposed
method can improve the diagnostic accuracy for certain class
samples based on the knowledge transferred from the T-model
during training.

To further investigate the impact of the proposed
temperature-adaptive variation method on the knowledge
distillation process, we plotted the variations of the loss
function during the knowledge distillation training for both the
proposed method and KT_T0, as shown in Fig. 12. It can be
seen that the loss curve of the proposed method shows better
convergence in both experimental groups, while the KT_T0
curve shows more pronounced oscillations. These observations
explain the superior diagnostic performance of the proposed
method compared to KT_T0. Due to the adaptive adjustment
of the distillation temperature, the training process can more
effectively guide the S-model to learn from the knowledge of
the T-model, enabling the S-model to better understand and
generalize complex knowledge representations, thus achieving
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Fig. 11. Confusion matrix of the annealing experiment in case two. (a) Group A. (b) Group C.

Fig. 12. Loss variation of the proposed method and KD_T0 during the
knowledge distillation process.

superior diagnostic results. In contrast, the fixed distillation
temperature of KT_T0 may cause the S-model to struggle to
capture crucial knowledge from the T-model at certain points,
which in turn affects its final diagnostic performance.

V. PRACTICAL CONSIDERATIONS AND CHALLENGES

Despite the outstanding performance demonstrated by the
proposed method in the previous chapters, introducing it into
real industrial scenarios involves various practical consider-
ations and potential challenges. We will focus on practical
issues related to implementation infrastructure, method inte-
gration, and framework generalization to ensure the feasibility
and effectiveness of the proposed framework in practical
applications [15], [31], [45].

A. Implementation Infrastructure

The distributed framework for deployment and implemen-
tation of the proposed method is shown in Fig. 13, which
is mainly composed of cloud servers, edge devices, and

Fig. 13. Distributed framework for deployment and implementation of the
proposed method.

IoT networks. When implementing the deployment of the
proposed framework, a series of practical considerations will
be faced when it comes to the real industrial IoT environment.
When selecting the training part of the proposed method for
cloud server deployment, give priority to using the platform
as a service (PaaS) form of the cloud. While providing
high development efficiency, it can facilitate the secondary
development of the proposed framework. Also, it is critical
to consider the number of service devices and the level of
task concurrency when selecting edge devices with appropri-
ate processing power to ensure real-time diagnostics. When
constructing the IoT network, the choices should be made
based on actual application scenarios, including the selection
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of suitable communication networks (Ethernet, 5G, etc.),
communication protocols (MQ Telemetry Transport, Modbus,
LoRaWAN, etc.), and the appropriate network topology. It
is worth noting that the privacy and security of data should
be taken into account when selecting infrastructure, and the
private cloud service and the encryption of data protocols
should be considered. In addition, the energy consumption of
edge devices deserves equal attention.

B. Methodology Integration

System integration is also worth emphasizing when deploy-
ing the application. First, the compatibility of the proposed
method with the data center, control algorithm, and other func-
tional components in terms of operating system and algorithm
language should be considered. Especially in terms of data, the
sampling window of the model should be adjusted according
to the actual sampling rate of the sensor and the network
transmission rate. At the same time, the components should
focus on real-time demand and performance compatibility in
the process of mutual collaboration. In addition, an effective
error-handling mechanism should be introduced.

C. Challenges in Generalizing Frameworks

When deploying and implementing the proposed method, in
addition to considering the above factors, the proposed method
also faces potential challenges of generalization. The proposed
framework focuses on studying how to transfer knowledge
from the T-model to the S-model. In actual application
scenarios, more complex problems, such as changing working
conditions and category drift may be faced, resulting in a
decrease in model generalization ability. The T-model and
S-model should be improved in a targeted manner based on
the proposed adaptive knowledge distillation framework based
on the actual situation.

VI. CONCLUSION

Reliable operation of mechanical equipment heavily
depends on intelligent fault diagnosis. However, traditional
cloud-based fault diagnosis methods face challenges, such as
time delays and data loss. This has led to the emergence of
edge computing-based fault diagnosis as a promising alterna-
tive. The hardware resources of edge devices in the industrial
IoT are limited, which makes it challenging to balance
diagnostic capabilities and operational efficiency. This study
proposes a lightweight intelligent fault diagnosis framework
specifically designed for IoT edge computing scenarios, using
adaptive knowledge distillation. By integrating fault diagnosis
with edge computing, real-time diagnostic capabilities are
guaranteed. Knowledge transfer from a cloud-based deep
neural network model to a lightweight edge-based model is
facilitated through knowledge distillation. The S-model effec-
tively learns knowledge from the T-model through dynamic
adjustment of the distillation temperature, achieving a deeper
understanding and generalization of complex knowledge rep-
resentations. Experiments were conducted on a customized
experimental platform. The proposed method achieved diag-
nostic accuracy improvements of 6.99% and 1.63% compared

to Xception and Resnet, respectively. Additionally, it achieved
an average improvement of 14.61% and 19.57% compared
to Mobilenet and Mnasnet, respectively. In the lightweight
testing, the proposed method achieved inference speeds that
were 10.29% and 8.30% of Xception and Resnet, respec-
tively, and 57.07% and 26.33% of Mobilenet and Mnasnet,
respectively. Compared to the T-model, the memory decreased
by 3.42% and the speed increased by 11.38%. Additionally,
experiments were conducted on a publicly available data set,
where the proposed method achieved an average diagnostic
accuracy improvement of 4.58% compared to the S-model and
an average improvement of 2.49% compared to the method
without temperature-adaptive adjustments.

In summary, the application of the temperature-adaptive
change method in knowledge distillation training effectively
improves the training effect of the S-model and enhances
its diagnostic ability in complex samples. This provides an
effective way to optimize the deployment of lightweight
intelligent fault diagnosis in IoT edge computing scenarios,
further promoting the promotion and application of intelligent
fault diagnosis in practical applications. However, traditional
methods of knowledge refinement only learn the output of
the teacher network, resulting in the loss of knowledge in
the middle layer. Future work could attempt to exploit the
information contained in the intermediate model layer by
designing different knowledge representations, rather than only
using the output information.
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